合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> LB膜分析儀應(yīng)用:不同初始表面壓力條件對VhPLD的磷脂吸附親和力影響(一)
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(二)
> 工業(yè)中表面張力的重要性
> 泡沫形成的原理是什么?陰離子表面活性劑為何可以作為起泡劑?
> 雙季銨基鄰苯二甲酸酯基表面活性劑SHZ16和SHZ14表面張力等性能對比(二)
> 不同溫度和壓力對AOT穩(wěn)定CO2乳液的界面張力影響(二)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(三)
> 為什么水與油互不相溶?
> 表面張力和重力驅(qū)動下液態(tài)釬料填充焊縫流動模型構(gòu)建及效果評估(二)
> 應(yīng)用單分子層技術(shù)分析磷脂酶與不同磷脂底物特異水解性能:結(jié)果和討論、結(jié)論!
推薦新聞Info
-
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(二)
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(一)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(五)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(四)
> 利用表面張力優(yōu)化浮選工藝:調(diào)整劑AY在石英-膠磷礦分離中的活性調(diào)控(二)
> 利用表面張力優(yōu)化浮選工藝:調(diào)整劑AY在石英-膠磷礦分離中的活性調(diào)控(一)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(三)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(二)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(一)
> 溫度和碳碳雙鍵數(shù)對脂肪酸酯表面張力的影響(二)
香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機制(中)
來源:高分子學(xué)報 瀏覽 186 次 發(fā)布時間:2025-11-26
3結(jié)果與討論
3.1單分子膜行為分析
將1 mg/mL CODA和CO2DA氯仿溶液均勻鋪展在水面上,溶劑揮發(fā)后即形成單分子膜。控制膜障以5mm/min的速率前進,逐步壓縮單分子膜,得到CODA和CO2DA單分子膜的π-A曲線,如圖2所示。
隨著膜障逐步壓縮薄膜,當(dāng)CODA的分子占據(jù)面積達到0.6nm2時,表面壓逐漸增大,進入液態(tài)膜階段,此后膜壓隨占據(jù)面積的減小而持續(xù)增加。當(dāng)占據(jù)面積達到0.4nm2時,π-A曲線進入水平段,膜壓隨占據(jù)面積緩慢變化,隨后又繼續(xù)仰起。而對于CO2DA單分子膜,分子占據(jù)面積達到0.85nm2時,表面壓逐漸增大,進入液態(tài)膜階段,此后膜壓隨占據(jù)面積的減小而持續(xù)增加。當(dāng)占據(jù)面積達到0.4nm2時,π-A曲線進入水平段,膜壓隨占據(jù)面積緩慢變化,隨后又繼續(xù)仰起。
2種單體分子結(jié)構(gòu)相似,CO2DA比CODA多了一CH?-CH?O一柔性間隔基,整個分子的舒展程度相對較大。當(dāng)CODA分子在水面鋪展時,與水分子的相互作用小,分子"平躺"在水面上,當(dāng)膜障壓縮單分子膜時,CODA分子受到側(cè)向壓力時容易發(fā)生滑移,形成多層膜。而CO2DA分子端基親水性相對較強,當(dāng)膜障壓縮單分子膜時分子在水面能立起來,并與液面形成一定的夾角。因此CO2DA單分子膜占據(jù)面積較大,崩潰壓較高。
3.2 LB膜結(jié)構(gòu)表征
通過垂直沉積法在35mN/m的膜壓下,將氣-液界面上的單層膜轉(zhuǎn)移到石英片上,制備CODA和CO2DA多層LB膜。81層CODA和CO2DA LB膜的小角X射線衍射圖如圖3所示。
在2θ=2°~10°范圍內(nèi)出現(xiàn)的多個等距離Bragg衍射峰表明得到的CODA和CO2DA LB膜具有很好的周期性結(jié)構(gòu)。假定從左至右Bragg衍射峰依次為(001),(002),...,(006),用Bragg方程對各級衍射峰進行計算可得CODA和CO2DA LB膜層狀結(jié)構(gòu)間距為5.6nm和6.1nm。CO2DA LB膜的Bragg衍射峰較寬,強度較弱,Bragg衍射峰隨角度的增大衰減很快,說明CO2DA LB膜中分子排列較CODA LB膜中松散,存在局部的缺陷。理論計算充分展開的CODA和CO2DA分子鏈長約為3.5nm和3.6nm,所以觀察到的周期結(jié)構(gòu)包含雙層的CODA和CO2DA分子。我們可以預(yù)想雙層結(jié)構(gòu)的中間區(qū)域是香豆素基團經(jīng)過強烈的π-π堆積作用形成的,而雙層結(jié)構(gòu)單元的外部為烷基側(cè)鏈。香豆素取代二乙炔單體的規(guī)則排列是二乙炔單元進行拓撲聚合的先決條件。
3.3紫外-可見吸收光譜分析
紫外-可見分析可用于定性描述化合物對不同波長光的吸收能力,并反映出化合物的分子能級變化,特別是紫外-可見吸收曲線的形狀和最大吸收波長λmax的位置以及吸收強度等與分子堆砌結(jié)構(gòu)的關(guān)系。如圖4所示,CODA和CO2DA單體LB膜的最大吸收峰分別在270nm和294nm處,相較CODA和CO2DA分子的氯仿溶液,吸收峰均有一定程度的藍移。
說明在形成LB膜的過程中,相鄰的CODA和CO2DA分子香豆素基團在π-π堆積作用下形成了H聚集結(jié)構(gòu)。與CO2DA LB膜相比,CODA LB膜中香豆素基團吸收峰藍移程度更大(41 nm),CODA LB膜中香豆素基團間形成了緊密的H-聚集,而CO2DA LB膜中分子排列較松散。
3.4圓二色譜分析
當(dāng)把CODA和CO2DA單體LB膜用圓二色譜進行表征時,我們發(fā)現(xiàn)一個有趣的實驗現(xiàn)象。雖然CODA是非手性小分子,但是CODA單體LB膜的CD光譜表現(xiàn)出明顯的Cotton效應(yīng),如圖5(A)所示。
這個位置對應(yīng)于香豆素基團的吸收帶,因此歸屬于香豆素基團的CD信號。在CODA單體LB膜中,香豆素基團間形成了緊密的H-聚集,而且由于相鄰兩個芳香環(huán)受到π-π體系間靜電斥力的影響以"面對面"重疊排列的可能性很小,通常存在錯位。在單分子膜壓縮過程中,香豆素基團間強烈的π-π堆積形成螺旋排列,并且由于過度擠壓,體系鏡面對稱性被打破,某一方向的螺旋堆砌結(jié)構(gòu)在LB膜中占主導(dǎo)地位,從而產(chǎn)生超分子手性。需要指出的是,CODA單體LB膜手性信號強度和方向與沉積過程密切相關(guān),即不同批次制備出的LB膜手性信號強度大小不一甚至是方向相反。換句話說CODA單體LB膜形成的螺旋結(jié)構(gòu)方向是隨機的。但是對于CO2DA單體LB膜,分子排列較松散,存在局部的缺陷,香豆素基團間無法形成緊密有序的規(guī)整排列,沒有觀察到明顯的CD信號(圖5(B))。





